
Defenses Against 
Distributed Denial of Service Attacks 

Gary C. Kessler 
November 2000  

 

This paper was submitted as the practical exercise in partial 
fulfillment for the SANS/GIAC Security Essentials Certification 

(GSEC). A much expanded version will be published as Chapter 11, 
"Denial of Service Attacks" (by Diane E. Levine and GCK) in the 

upcoming 4th edition of the Computer Security Handbook, edited by 
M.E. Kabay and S. Bosworth (John Wiley & Sons, in preparation).  

 

This short paper discusses defenses against Distributed Denial of Service (DDoS) attacks. 
DoS attacks are of particular interest and concern to the Internet community because they 
seek to render target systems inoperable and/or target networks inaccessible. 
"Traditional" DoS attacks, however, typically generate a large amount of traffic from a 
given host or subnet and it is possible for a site to detect such an attack in progress and 
defend themselves. Distributed DoS attacks are a much more nefarious extension of DoS 
attacks because they are designed as a coordinated attack from many sources 
simultaneously against one or more targets. 

This paper will focus on DDoS attacks only and assumes some basic familiarity with 
different DoS attacks. Rather than describe specific DDoS attacks in detail, this paper 
will define generic DDoS terms and ways in which service providers and user sites can 
defend themselves against these attacks. 

A Short History of DDoS 

Denial-of-service attacks under a number of guises have been around for decades. 
Distributed DoS attacks are much newer, first being seen in late June and early July of 
1999. The first well-documented DDoS attack appears to have occurred in August 1999, 
when a DDoS tool called Trinoo (described below) was deployed in at least 227 systems, 
of which at least 114 were on Internet2, to flood a single University of Minnesota 
computer; this system was knocked off the air for more than two days. 

The first well-publicized DDoS attack in the public press was in February 2000. On 
February 7, Yahoo! was the victim of a DDoS during which its Internet portal was 
inaccessible for three hours. On February 8, Amazon, Buy.com, CNN, and eBay were all 
hit by DDoS attacks that caused them to either stop functioning completely or slowed 



them down significantly. And, on February 9, E*Trade and ZDNet both suffered DDoS 
attacks. Analysts estimated that during the three hours Yahoo was down, it suffered a loss 
of e-commerce and advertising revenue that amounted to about $500,000. According to 
book seller Amazon.com, its widely publicized attack resulted in a loss of $600,000 
during the 10 hours it was down. During their DDoS attacks, Buy.com went from 100% 
availability to 9.4%, while CNN.com's users went down to below 5% of normal volume 
and Zdnet.com and E*Trade.com were virtually unreachable. Schwab.com, the online 
venue of the discount broker Charles Schwab, was also hit but refused to give out exact 
figures for losses. One can only assume that to a company that does $2 billion dollars 
weekly in online trades, the downtime loss was huge. 

In a DDoS attack, the attacking packets come from tens or hundreds of addresses rather 
than just one, as in a "standard" DoS attack. Any DoS defense that is based upon 
monitoring the volume of packets coming from a single address or single network will 
then fail since the attacks come from all over. Rather than receiving, for example, a 
thousand gigantic Pings per second from an attacking site, the victim might receive one 
Ping per second from 1000 attacking sites. 

One of the other disconcerting things about DDoS attacks are that the handler can choose 
the location of the agents. So, for example, a handler could target several NATO sites as 
victims and employ agents that are all in countries know to be hostile in NATO. The 
human attacker, of course, might be sitting in Canada. 

Like DoS attacks, all of the DDoS attacks employ standard TCP/IP messages -- but 
employ them is some non-standard ways. Common DDoS attacks have such names as 
Tribe Flood Network (TFN), Trin00, Stacheldraht, and Trinity. Some details about these 
will be presented in the following sections. 

DDoS Terminology and Overview 

To describe and understand DDoS attacks, it is important to understand the terminology 
that is used to describe the attacks and the tools. While the industry has more or less 
settled upon some common terms, that consensus did not come about until well after 
many DoS/DDoS attacks had already appeared in the hacker and mainstream literature. 

DDoS attacks always involve a number of systems. A typical DDoS attack scenario 
might follow roughly the following steps: 

1. An intruder finds one or more systems on the Internet that can be compromised 
and exploited (see figure below). This is generally accomplished using a stolen 
account on a system with a large number of users and/or inattentive 
administrators, preferably with a high-bandwidth connection to the Internet (many 
such systems can be found on college and university campuses).  



 

 

2. The compromised system is loaded with any number of hacking and cracking 
tools such as scanners, exploit tools, operating system detectors, root kits, and 
DoS/DDoS programs. This system becomes the DDoS master. The master 
software allows it to find a number of other systems that can themselves be 
compromised and exploited. The attacker scans large ranges of IP network 
address blocks to find systems running services known to have security 
vulnerabilities. This initial mass-intrusion phase employs automated tools to 
remotely compromise several hundred to several thousand hosts, and installs 
DDoS agents on those systems. The automated tools to perform this compromise 
is not part of the DDoS toolkit but is exchanged within groups of criminal 
hackers. These compromised systems are the initial victims of the DDoS attack. 
These subsequently exploited systems will be loaded with the DDoS daemons that 
carry out the actual attack (see figure below).  



 

 

3. The intruder maintains a list of owned systems, the compromised systems with the 
DDoS daemon. The actual denial of service attack phase occurs when the attacker 
runs a program at the master system that communicates with the DDoS daemons 
to launch the attack. Here is where the intended DDoS victim comes into the 
scenario (see figure below).  

 



 
 

Communication between the master and daemons can be obscured so that it becomes 
difficult to locate the master computer. Although some evidence may exist on one or 
more machines in the DDoS network regarding the location of the master, the daemons 
are normally automated so that it isn't necessary for an ongoing dialogue to take place 
between the master and the rest of the DDoS network. In fact, techniques are typically 
employed to deliberately camouflage the identity and location of the master within the 
DDoS network. These techniques make it difficult to analyze an attack while in progress 
and also to block attacking traffic and trace it back to its source. 

In most cases, the system administrators of the infected systems don't even know that the 
daemons have been put in place. Even if they do find and eradicate the DDoS software, 
they can't help anyone determine where else the software may have been placed. Popular 
systems to exploit are a site's Web, e-mail, name, or other servers since these systems are 
likely to have a large number of open ports, a large amount of traffic, and are unlikely to 
be quickly pulled off-line even if an attack can be traced to them. 

A final word on terminology is necessary. Early descriptions of DDoS tools used a 
jumble of terms to describe the various roles of the systems involved in the attack. At the 
CERT Distributed System Intruder Tools workshop held in November 1999, some 
standard terminology was introduced and those terms are used in the paragraphs above. 



To align those terms and the terms used by the hacker literature as well as early 
descriptions, we find the following synonyms: 

• Intruder: Also called the attacker or client  
• Master: Also called the handler  
• Daemon: Also called an agent, bcast (broadcast) program, or zombie  
• Victim: Always the victim  

It should not go without saying that DoS/DDoS attacks actually have two victims, namely 
the ultimate target as well as the intermediate system(s) that were exploited and loaded 
with daemon software. Although we tend to refer to the site that is eventually brought 
down as the victim, the intermediate systems from where the attack is launched have also 
been victimized. In this chapter, we will focus on the end-of-the line DoS/DDoS victim. 

Some of the DDoS Tools 

While this paper focuses on defensive measures against DDoS, it is important to know 
the names of the major tools to see their commonality -- and how they have already 
evolved!! By design, this section will be very brief; the reference section will provide a 
resources for additional information. 

In rough chronological order, the DDoS tools commonly seen today include: 

• Trinoo, also called Trin00, was the first known DDoS tool, starting to appear in 
June or July 1999. Trin00 is a distributed SYN DoS attack, where masters and 
daemons communicate using the ports shown in the table below.  

• The Tribe Flood Network (TFN) started to appear after trinoo. TFN client and 
daemon programs implement a DDoS network capable of employing a number of 
attacks, such as ICMP flood, SYN flood, UDP flood, and SMURF style attacks. 
TFN is noticeably different than trinoo in that all communication between the 
client (attacker), handlers, and agents use ICMP ECHO and ECHO REPLY 
packets. Communication from the TFN client to daemons is accomplished via 
ICMP ECHO REPLY packets. The absence of TCP and UDP traffic sometimes 
makes these packets difficult to detect because many protocol monitoring tools 
are not even configured to capture and display the ICMP traffic.  

• Stacheldraht (German for "barbed wire") is a DDoS tool that started to appear in 
the late summer of 1999 and combines features of trinoo and TFN. It also 
contains some advanced features, such as encrypted attacker-master 
communication and automated agent updates. The possible attacks are similar to 
those of TFN; namely, ICMP flood, SYN flood, UDP flood, and SMURF attacks.  

• In August 2000, a DDoS attack against Apache Web servers was first detected. 
The attack took advantage of a vulnerability whereby a URL sent to an Apache 
Web server containing thousands of forward slashes ("/") would put the server 



into a state that would consume enormous CPU time. This particular attack was 
launched by over 500 compromised Windows computers and would, presumably, 
succeed against Apache Web servers prior to version 1.2.5.  

• During the following month, a new DDoS tool called Trinity was reported. Trinity 
is capable of launching several types of flooding attacks on a victim site, 
including UDP, fragment, SYN, RST, ACK, and other floods. Communication 
from the handler or intruder to the agent, however, is accomplished via Internet 
Relay Chat (IRC) or AOL's ICQ; Trinity appears to use primarily port 6667 and 
also has a backdoor program that listens on TCP port 33270.  

• In November 1999, the Shaft DDoS tool became available. A Shaft network looks 
conceptually similar to a trinoo; it is a packet flooding attack and the client 
controls the size of the flooding packets and duration of the attack. One 
interesting signature of Shaft is that the sequence number for all TCP packets is 
0x28374839.  

• Tribe Flood Network 2K (TFN2K) was released in December 1999. TFN2K is a 
complex variant of the original TFN with features designed specifically to make 
TFN2K traffic difficult to recognize and filter, remotely execute commands, hide 
the true source of the attack using IP address spoofing, and transport TFN2K 
traffic over multiple transport protocols including UDP, TCP, and ICMP. TFN2K 
attacks include flooding (as in TFN) and those designed to crash or introduce 
instabilities in systems by sending malformed or invalid packets, such as those 
found in the Teardrop and Land attacks.  

DDoS Tool  
Intruder-to-master 

Communication  
Master-to-daemon 

Communication  
Daemon-to-master 

Communication  

Trinoo  27665/tcp  27444/udp  31335/udp  

TFN  
ICMP Echo/Echo 
Reply  

ICMP Echo Reply  
ICMP Echo/Echo 
Reply  

Stacheldraht  16660/tcp  65000/tcp  ICMP Echo Reply  

Trinity  6667/tcp  
6667/tcp (also 
33270/tcp)  

   

Shaft  20432/tcp  18753/udp  20433/udp  

The tools listed here are the best known, and most widely sued, but they are not the only 
ones and more tools are becoming available. In addition, the distribution of zombie 
software is not always due to an attacker exploiting a vulnerability of an exposed system. 
Indeed, the user is very often the "culprit" and Trojan horses are often the mechanism for 
distributing the zombie code. The SubSeven Defcon8 software, for example, is a 
backdoor virus that is rapidly spreading. SubSeven gets on a user's system because it is 
distributed within programs available via Usenet and other Internet sites, such as some 



game or pornography programs (e.g., SexxxyMovie.mpeg). Computer systems today are 
frequently scanned for the presence of SubSeven and provides a potential door into users' 
systems. 

DDoS Defenses 

The earlier part of this paper has been the preamble to discussing how sites can protect 
themselves from these kinds of attacks. The truth is that a site cannot defend itself from 
DDoS attacks alone. DDoS attacks depend upon the "community" of the Internet and 
defenses, therefore, depend upon the Internet community acting like a community with a 
common interest. And defending against attack includes ensuring that our own sites are 
not the source of attacks and our own networks do not forward attacks. This section will 
discuss some methods that will help prevent the spread of DDoS attacks, by limiting the 
distribution of the tools and/or limiting the propagation of the offending "attack" packets. 

Although not discussed in detail here, another point needs to be made about DDoS attack 
responses. If you are the victim of such an attack, maintain detailed logs of all actions 
you take and events you detect. These logs may prove invaluable in subsequently 
understanding the attack that occurred, preventing other attacks at your site and others, 
and aiding law enforcement efforts to track down the perpetrators. 

User and System Administrator Actions 

Despite the best intentions and even the best distributed system management tools, the 
fact is that most computers today are largely managed by the local user. That means, in 
essence, that the local system has no security protections. But whether the local host 
computer is a secretary's desktop system or the Web server for a company, there are steps 
that can and should be taken to minimize the potential that an individual system will be 
compromised and itself attacked or used as a stepping-stone to attack others: 

1. Keep abreast of the security vulnerabilities for all of your site's hardware, 
operating systems, and application and other software. This sounds like a 
Herculean task but it is essential to safeguarding your network. Apply patches and 
updates as soon as possible. Standardize on certain hardware, operating systems, 
and software where feasible to help manage the problem.  

2. Consider using some form of "personal" firewall software to help detect an attack 
at your systems.  

3. Monitor your system periodically to test for known operating system 
vulnerabilities. Also periodically check to see what TCP/UDP ports are in use 
using the netstat -a command; every open port should be associated with a 
known application. Turn off all unused applications.  

4. Regularly monitor your system logs and look for suspicious activity.  



5. Use available tools to periodically audit your systems, particularly servers, to 
ensure that there have been no unauthorized/unknown changes to the file system, 
registry, user account database, etc.  

6. Do not download software from unknown, untrusted sites. If possible, know the 
author of the code. Even better is to download source code, review it (where 
feasible), and compile it on your system, if possible, rather than downloading 
binaries or executables.  

7. Follow CERT, SANS, and TruSecure (ICSA) best practices procedures.  

Local Network Actions 

Even if a user locks down their system so that no vulnerability has gone unpatched and 
no exposure unprotected, the network itself -- including the user community -- can still be 
at risk. There are a number of steps that local network managers and network 
administrators can take to protect all of their own users as well as the rest of the Internet 
community:  

1. Every network connected to the Internet should perform egress address filtering at 
the router. Egress filtering means that the router should examine the IP Source 
Address field of every outgoing packet to the Internet to be sure that the NET_ID 
matches the NET_ID of the network. The user's firewall has historically been 
used to protect the user from attacks from the outside world. But those attacks 
come from somewhere so sites should also use the firewall to protect the outside 
world.  

2. Networks should block incoming packets addressed to the broadcast address (the 
all-ones HOST_ID). There is no legitimate reason that an external network device 
should be sending a broadcast message to every host on your network.  

3. To prevent your site from being used as a broadcast amplification point, turn off 
the Directed Broadcast capability at the router unless it is absolutely essential. If 
you think that it is essential, re-examine your network to see if there is not a better 
way. Even where Directed Broadcasts are useful, they are typically needed only 
within the enterprise and are not required for hosts on the outside.  

4. RFC 1918 defines a set of private IP addresses that are not to be routed on the 
Internet. These addresses include:  

10.0.0.0/8 
172.16.0.0/12 
192.168.0.0/16 

10.0.0.0-10.255.255.255 
172.16.0.0-172.31.255.255 
192.168.0.0-192.168.255.255 

One Class A address 
16 Class B addresses 
256 Class C addresses  

5.  
In addition, there are a number of reserved IP addresses that are never assigned to 
"public" networks, including:  



0.0.0.0/32 
127.0.0.0/8 
169.254.0.0/16 
192.0.2.0/24 
224.0.0.0/4 
240.0.0.0/5 
248.0.0.0/5 
255.255.255.255/32 

Historical broadcast address 
Loopback 
Link-local Networks 
TEST-NET 
Class D Multicast address range 
Class E Experimental address range 
Unallocated 
Broadcast  

6.  
IP address spoofing is commonly employed by attackers and they commonly use 
one of the RFC 1918 private addresses or one of the other reserved addresses. 
Any packet that contains an RFC 1918 or reserved IP address in the IP Source 
Address or Destination Address field should be immediately discarded by the 
firewall and not ever sent to the Internet.  

7. Block all unused application ports at the firewall, particularly such ports as IRC 
(6665-6669/tcp) and those known to be associated with DDoS tools.  

8. Use some form of intrusion detection system (IDS) to protect your network. You 
might consider providing every system with "personal" firewall software to help 
detect an attack at individual systems; this is particularly potentially useful at sites 
(such as colleges) that have a large number of systems in front of a firewall (it is 
no coincidence that so many daemons reside on college and university computers 
that have been "owned").  

9. Regularly monitor network activity so that aberrations in traffic flow can be 
quickly detected.  

10. Educate your users about things to watch for on their systems and how to report 
any irregularity that might indicate that someone or something has tampered with 
their system. Educate your help desk and technical support to assist those users 
who make such reports. Have an intelligence gathering system within your 
organization so that such reports are centrally known so that trends can be spotted 
and responses devised.  

11. Follow CERT, SANS, and TruSecure (ICSA) best practices procedures.  

ISP Actions 

The Internet Service Providers (ISPs) offer the last hope in defeating the spread of a 
DDoS attack. While the ISP cannot take responsibility for locking down every customers' 
host systems, the ISPs have -- and should accept -- the responsibility to ensure that their 
network does not carry packets that contain obviously "bad" packets. Some of the steps 
that ISPs can take include: 



1. As mentioned above, IP address spoofing is commonly employed by attackers 
using one of the RFC 1918 private addresses or one of the other reserved 
addresses. Amazingly, many ISPs will route these packets. Indeed, there is no 
entry in their routing table telling them where to send the packets; they merely 
forward them to a default upstream ISP. Any packet that contains any RFC 1918 
or reserved IP address in the IP Source Address or Destination Address field 
should be immediately discarded.  

2. Perform ingress (and egress) address filtering. Ingress filtering means that they 
should examine every incoming packet to their network from a customer's site 
and examine the IP Source Address field to be sure that the NET_ID matches the 
NET_ID assigned to that customer. This will require additional configuration at 
the router and may even result is slight performance degradation but the tradeoff 
is certainly well worth the effort. The ISPs should also perform egress filtering to 
check their outbound packets to upstream and peer ISPs.  

3. Disable IP directed broadcasts.  

4. Pay careful attention to high-profile systems (servers) and customers.  

5. Educate customers about security and work with them to help protect themselves.  

Most of the ISP community take at least some of these steps. Users should insist that their 
ISPs provide at least these protections and should not do business with those who don't. 
The TruSecure (formerly ICSA) ISP Security (ISPSec) community is a good source of 
information for ISPs. 

Other Tools Under Development or Consideration 

Responses to DDoS attacks are not limited to the defensive steps listed above. Indeed, 
proactive responses to the prevention and detection of DDoS attacks is an active area of 
research. 

One method that is being discussed is to examine the network at the ISP level and build a 
type of intelligent, distributed network traffic monitor; in some sense, this would be like 
an IDS for the Internet. The idea is that ISPs, peering points, and/or major host servers 
would have traffic monitor hardware watching over it. The monitor hardware would 
itself, naturally, use IP and the Internet for communications, much like today's routing 
protocols. each box would examine packets and their contents, doing some type of 
multilayer statistical analysis of traffic to learn the ordinary patterns. These devices 
would have enough intelligence, presumably, to be able to detect changes in traffic level 
and determine whether those changes reflected a normal condition or not. The hardware 
is defensive in nature at the receiving side. As an example, suppose that such hardware at 
Amazon.com thinks that there is a DoS attack being launched from an ISP in 
Gondwanaland. The traffic monitoring network would communicate and shut off traffic 
to Amazon coming from that ISP, as close to the ISP as possible. In this way, the 
distributed network of monitors can shut traffic off at the source. 



The hardware, of course, needs to somehow be informed about traffic level changes that 
are due to "normal" events, such as a new Super Bowl commercial being posted at the Ad 
Critic Web site or a new fashion show at Victoria Secret's Web site. And the hardware 
also needs to prevent the attacker community from operating under the cover of these 
normal events. 

RSA Laboratories, one of the leading vendors of cryptography in the world, has proposed 
another potential defense to DDoS attacks against Web servers that employs 
cryptographic methods. Their approach uses a client puzzle protocol designed to allow 
servers to accept connection requests from legitimate clients and block those from 
attackers. A "client puzzle" is a cryptographic problem that is generated in such a way as 
to be dependent upon time and information unique to the server and client request. 

The scheme, simply, works roughly like this. Under normal conditions, the server accepts 
any connection request from any client. If an attack is detected, the server selectively 
accepts connection requests by responding to each request with a puzzle. The server 
allocates the resources necessary to support a connection only to those clients that 
respond correctly to the puzzle within some regular TCP timeout period. The idea is that 
a bona fide client will only experience a modest delay getting a connection during an 
attack, while the attacker will require an incredible amount of processing power to sustain 
the number of requests necessary for a noticeable interruption in service, quickly 
blocking the attack (in effect, a reverse DoS). 

A third tool that is under consideration is that of IP Traceback. The problem with 
DoS/DDoS attacks is that packets come from a large number of sources and IP address 
spoofing masks those sources. Traceback, in concept, is a relatively straight-forward idea. 
Every packet on the Internet goes through some number of ISP routers. The processing 
power, memory, and storage are sufficiently available that routers could mark packets 
with partial path information as they arrive. Since DoS/DDoS attacks generally comprise 
a large number of packets, the traceback mechanism doesn't need to mark every packet, 
but only a sample size that statistically likely to include attack packets (e.g., one packet 
out of every 20,000). The feature allows the victim to locate the approximate source of 
the attack without the aid of outside agencies and even after the attack has ended. 
Another similar, yet different, traceback proposal would define an ICMP Traceback 
message that would be sent to the victim site containing partial route information about 
the sampled packet. While both of these proposals requires a change to tens of thousands 
of routers in the Internet, it is a solution that can be gradually implemented, is backward 
compatible, and results in no negative affect to users. 

These three proposals are merely samples of some of the R&D for dealing with DDoS 
attacks; the first adds new hardware to the Internet, the second requires changing Web 
server and client software (actually, upgrading Web browsers is probably the easiest part 
to fix even though there are millions of copies in distribution; the vast majority come 
from two vendors and users tend to eventually upgrade), and the third requires 
incrementally changing software in all of the Internet's routers. And there are even more 
proposals -- such as ICSA's Host Identity Payload (HIP) protocol -- under way. 



Final Comments 

One of the greatest short-comings in many organizations is that the highest levels of 
management do not truly understand the critical role that computers, networks, 
information, and the Internet play in the very life of the organization. Without using 
outright scare tactics, it is difficult to explain that there is an intruder community and that 
they are actively working on new tools all the time; and history has shown that as the 
tools mature and become more sophisticated, the technical knowledge necessary of the 
potential attacker goes down and the number of attacks overall goes up. Too many 
companies hide their heads in the sand and insist that "no one would bother us" without 
realizing that any site can become a target just by being there. 

Conclusion 

If anything proves the intertwingled nature of the Internet, it is the defense against DDoS 
attacks (even more than the Web!). DDoS attacks require the (unintended) collusion of 
hundreds or thousands of computers to attack a few victims and defense against DDoS 
attacks requires the (intended) cooperation of tens of thousands of ISPs and customer 
networks. DDoS attacks will be with us for some time but there are ways today to 
minimize them -- but they require continued diligence at locking down all of the hosts 
connected to the Internet. As that is not likely to happen anytime soon, the disappearance 
of DDoS attacks is equally unlikely. 

 

References 

• CERT/CC. "CERT Advisory CA-1999-17 Denial-of-Service Tools." 3 March 
2000. URL: http://www.cert.org/advisories/CA-1999-17.html (21 November 
2000).  

• _____. "Results of the Distributed-Systems Intruder Tools Workshop." 2-4 
November 1999. URL: http://www.cert.org/reports/dsit_workshop.pdf (21 
November 2000).  

• Dietrich, S., D. Dittrich, and N. Long. "An Analysis of the "Shaft" Distributed 
Denial of Service Tool." 13 March 2000. URL: 
http://www.sans.org/y2k/shaft.htm (21 November 2000).  

• Dittrich, D. "The DoS Project's "trinoo" distributed denial of service attack tool." 
21 October 1999. URL: http://staff.washington.edu/dittrich/misc/trinoo.analysis 
(21 November 2000).  

• _____. "The "stacheldraht" distributed denial of service attack tool." 31 December 
1999. URL: http://staff.washington.edu/dittrich/misc/stacheldraht.analysis (21 
November 2000).  

• _____. "The "Tribe Flood Network" distributed denial of service attack tool." 21 
October 1999. URL: http://staff.washington.edu/dittrich/misc/tfn.analysis (21 
November 2000).  



• Garber, L. "Denial-of-Service Attacks Rip the Internet." IEEE Computer 
Magazine, April 2000.  

• ICSA.net. "Security Best Practices for Internet Service Providers." 27 September 
1999, version 6. URL: 
http://www.icsa.net/html/communities/downloads/Best_Practices_v6%20rev.rtf 
(21 November 2000).  

• Internet Security Systems. "Trinity v3 Distributed Denial of Service tool." 5 
September 2000. URL: http://xforce.iss.net/alerts/advise59.php (21 November 
2000).  

• Moskowitz, R. "Host Identity Payload." Internet Draft, February 2000. URL:  


